Write the answers in the box, then fill in the blanks in the proof.

From the 1st scale we know: x = 50. Substitute ___ for x in: 2x = ? (2nd scale). So $2(___) = 100 = ?$

From the 1st scale we know: 4x = 20. Divide both sides of this equation by 4 so x =___. Substitute ___ for x in: 3x =? (2nd scale). So ___(5) = 15 = ?

Problem 3 $\frac{1}{2}\chi =$? =

From the 1st scale we know: $\frac{1}{2}x + 2 = 10$. Subtract ____ from both sides of this equation so $\frac{1}{2}x =$ ___. Substitute ____ for each $\frac{1}{2}x$ in: x =? (2nd scale). (Note: 1x is the same as x.)

Answers:

- 1. From the 1st scale we know: x = 50. Substitute 50 for x in: 2x = ? (2nd scale). So 2(50) = 100 = ?
- 2. From the 1st scale we know: 4x = 20. Divide both sides of this equation by 4 so x = 5. Substitute 5 for x in: 3x = ? (2nd scale). So 3(5) = 15 = ?
- 3. From the 1st scale we know: $\frac{1}{2}x + 2 = 10$. Subtract 2 from both sides of this equation so $\frac{1}{2}x = 8$. Substitute 8 for each $\frac{1}{2}x$ in: x = ? (2nd scale). (Note: 1x is the same as x.) So 8 + 8 = 16 = ?