To compute the perimeter of a rectangle, add the length and the width and then multiply by 2 .
$12.5 \mathrm{~cm}+3.3 \mathrm{~cm}=15.8 \mathrm{~cm}$

Directions: Use the information on page 9 to compute the perimeters of these rectangles.
Remember to label the unit of measurement-inches, feet, yards, centimeters, meters-in your answers.
1.

2.

$$
\mathrm{P}=
$$

\qquad
3. $4 \frac{1}{2} \mathrm{~cm}$

4.
$\mathrm{P}=$ \qquad

$$
\mathrm{P}=
$$

\qquad

$\mathrm{P}=$ \qquad
6. $\quad 6 \frac{1}{16} \mathrm{~cm}$

$\mathrm{P}=$ \qquad
$15.8 \mathrm{~cm} \times 2=31.6 \mathrm{~cm}$ $\mathrm{P}=31.6 \mathrm{~cm}$

Directions: Use a ruler and the information on pages 5 and 9 to help you measure and compute the perimeters of these rectangles.
7. a math book cover
length \qquad
width \qquad
$\mathrm{P}=$ \qquad
9. a paperback book cover length \qquad
width \qquad
$\mathrm{P}=$ \qquad

8. a sheet of paper
\qquad
width \qquad
$\mathrm{P}=$ \qquad

10. a desk

Computing Perimeters of Regular Polygons

To compute the perimeter of a regular polygon, in which all sides are equal, multiply the length of one side by the number of sides.

Directions: Compute the perimeter of each of the regular polygons illustrated below. Remember to label the unit of measurement-inches, feet, yards, centimeters, meters-in your answer.
1.

3.

5.

22.9 cm
7.

4.9 m

$4.9 \mathrm{~m} \times 4=19.6 \mathrm{~m}$
$2 \frac{1}{4}$ in.
2.

$3 \frac{1}{8} \mathrm{ft}$.
4.

6.

8.

To compute the perimeter of an irregular polygon, add the lengths of the sides.

$$
P=4.7 m+3.5 m+6.3 m+2.8 m=17.3 m
$$

Directions: Use the information on pages 5 and 9 to help you compute the perimeters of these polygons. Remember to label the unit of measurement-inches, feet, yards, centimeters, meters-in your answer.

1. $\mathrm{P}=$ \qquad
4.3 m
2. $\mathrm{P}=$ 8.4 m

3. $\mathrm{P}=$ \qquad

4. $\mathrm{P}=$ \qquad $4 \frac{1}{2} \mathrm{ft}$.

Directions: Use the information on page 9 to help you compute the circumferences of these circles. ($\mathrm{C}=2 \pi \mathrm{r}$ or $\mathrm{C}=\pi \mathrm{d}$)
5.

$\mathrm{r}=4 \mathrm{~m}$
\qquad
6.

$$
\begin{aligned}
& \mathrm{r}=6 \mathrm{in} . \\
& \mathrm{C}= \\
& \hline
\end{aligned}
$$

7.

8.

$$
\mathrm{d}=7 \mathrm{~m}
$$

$$
\mathrm{C}=
$$

\qquad

